In order to work out the relative needle valve aperture to venturi aperture, you need to establish the
size of needle jet, and size of needle and size of needle within the jet during the appropriate phase of
the slide operation. The $1 / 4$ to $3 / 4$ operation attributed to the needle jet is based on area of venturi open
rather than vertical movement of the needle and the relationship between the two require calculations
that are out of my comfort zone. I found a calculator to do this online @ handymath.com (you can easily
work area of segment as this is simply a quarter of the total, turning this into a segment height is where
you need the calulator.

So the first job is to manually measure the needle in full open and closed positions against the top of the emulsion tube, as this is possible to mark through the front of the carburettor.
lext you must meaure the distance between the top of the emulsion tube and the top of the needle je:
apply this correction factor and draw sketch of needle to help.
Next work out area of venturi, and the $1 / 4,1 / 2$ and $3 / 4$ areas from this.
Jsing calculator (handymath.com) work out segment heights for these.
Given that these segments essentially are vertical movments from the (now defined) point on the needle which intersects with the top of the needle jet when the slide is fully down, these can be marked on the needle and the needle measured to establish the diameters at those points.

	RHM twin carb
Needle jet (size	
main jet used	280
Main jet diameter	0.057
needie no	
heedle notch from bottom as	
distan	
O max open	
position (relative	
	0.507
venturi diameter	
pf carburettor	
area of venturi	0.7854
$1 / 4$ venturi area	0.19635
$1 / 2$ venturi area	0.3927
$1 / 4$ venturia area	0.58905
1/4 lift height	0.298
$1 / 2$ lift height	0.5
\%/4ift height	0.702
$1 / 4$ lift needle dia	0.098
$1 / 2$ lift needle dia	0.0925
\%/4ift needle dia	0.087
flow area at	
heedle jet at $1 / 4$	0.001281936
heedle jet at $1 / 2$	00204036
low area at	
heedle jet at $3 / 4$	
	0.0028804285
fuellair ratio at $1 / 4$	

